Data-Driven Model Predictive Control of Autonomous Mobility-on-Demand Systems
نویسندگان
چکیده
The goal of this paper is to present an end-to-end, data-driven framework to control Autonomous Mobility-onDemand systems (AMoD, i.e. fleets of self-driving vehicles). We first model the AMoD system using a time-expanded network, and present a formulation that computes the optimal rebalancing strategy (i.e., preemptive repositioning) and the minimum feasible fleet size for a given travel demand. Then, we adapt this formulation to devise a Model Predictive Control (MPC) algorithm that leverages short-term demand forecasts based on historical data to compute rebalancing strategies. Using simulations based on real customer data from DiDi Chuxing, we test the end-to-end performance of this controller with a stateof-the-art LSTM neural network to predict customer demand: we show that this approach scales very well for large systems (indeed, the computational complexity of the MPC algorithm does not depend on the number of customers and of vehicles in the system) and outperforms state-of-the-art rebalancing strategies by reducing the mean customer wait time by up to to 89.6 %.
منابع مشابه
Gaussian Process-Based Decentralized Data Fusion and Active Sensing for Mobility-on-Demand System
Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm of one-way vehicle sharing for sustainable personal urban mobility in densely populated cities. In this paper, we enhance the capability of a MoD system by deploying robotic shared vehicles that can autonomously cruise the streets to be hailed by users. A key challenge to managing the MoD system effectively is that o...
متن کاملSimulation Framework for Rebalancing of Autonomous Mobility on Demand Systems
We are observing a disruption in the urban transportation worldwide. The number of cities offering shared-use on-demand mobility services is increasing rapidly. They promise sustainable and affordable personal mobility without a burden of owning a vehicle. Despite growing popularity, on-demand services, such as carsharing, remain niche products due to small scale and rebalancing issues. We are ...
متن کاملAccess control in ultra-large-scale systems using a data-centric middleware
The primary characteristic of an Ultra-Large-Scale (ULS) system is ultra-large size on any related dimension. A ULS system is generally considered as a system-of-systems with heterogeneous nodes and autonomous domains. As the size of a system-of-systems grows, and interoperability demand between sub-systems is increased, achieving more scalable and dynamic access control system becomes an im...
متن کاملApplication of the Phenomenological Model to Electrophoretic Mobility in Mixed Solvent Electrolyte Systems in Capillary Zone Electrophoresis
The phenomenological model of Khossravi and Connors (1992) has been adopted to calculate the electrophoretic mobility of drugs at different concentrations of solvents in a binary mixture. The accuracy and predictability of the model have been evaluated employing 14 experimental data sets by using average percentage mean deviation (APMD). The obtained APMD for correlative and predictive studies ...
متن کاملApplication of the Phenomenological Model to Electrophoretic Mobility in Mixed Solvent Electrolyte Systems in Capillary Zone Electrophoresis
The phenomenological model of Khossravi and Connors (1992) has been adopted to calculate the electrophoretic mobility of drugs at different concentrations of solvents in a binary mixture. The accuracy and predictability of the model have been evaluated employing 14 experimental data sets by using average percentage mean deviation (APMD). The obtained APMD for correlative and predictive studies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017